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In this paper, a novel time-varying formation tracking control scheme in fixed-time framework under
directed topologies is proposed for multi-agent systems (MASs), with consideration of uncertainties
and the absence of the leader’s velocity measurements (LVMs). First, a novel cascaded fixed-time state
observer (CFTSO) under directed topologies without LVMs is developed for each follower to acquire
the estimates of the leader’s states (LSs) in a fixed time. Then, minimal learning parameter (MLP) meth-
ods combining with radial basis function neural networks (RBFNNs) are utilized to cope with the uncer-
tainties. Finally, on the basis of the designed CFTSO and MLP, a new formation control scheme in fixed-
time framework under directed topologies is established to solve the time-varying formation tracking
control problem.

� 2021 Elsevier B.V. All rights reserved.
1. Introduction

Recently, formation control problem for multi-agent systems
(MASs) has been gaining popularity and obtained a wealth of
achievements [1–3]. Note that the majority goals of the available
formation control strategies are realizing time-invariant formation
shapes. Nevertheless, such formations cannot satisfy practical
application requirements when multiple obstacles need to be
avoided and there exist rapid changes in external environment.
Thus, increasing achievements on time-varying formation control
have been made in recent decades [4–6].

Convergence rate is usually treated as a vital criterion to evalu-
ate the formation control performance for MASs. As we all know,
one of the efficient methods of improving convergence rate is to
realize finite time convergence compared to asymptotic conver-
gence. However, the settling time function derived from finite-
time stability analysis grows unbounded along with the values of
the initial states. For the sake of overcoming the above shortcom-
ings, fixed-time stability emerges in [7]. Such stability property
guarantees that the settling time is irrelative to the initial state val-
ues and uniformly bounded [8]. As a result of the superiority of
fixed-time stability, some studies of fixed-time consensus and for-
mation control for MASs are conducted in [9,10].
Inaccurate leader’s velocity measurements (LVMs) in formation
control may result in deterioration of the control performance. In
practice, LVMs may be contaminated by noises [11–13]. To solve
the problem, some control schemes based on velocity observers
are investigated to estimate the LVMs in [13,14]. However, because
of the distributed manner of MASs, only a portion of the followers
can access to the state information of the leader, so that the output
of the velocity observer of the leader cannot be acquired by each
follower, which will bring the challenge to robust nonlinear control
design and analysis. To overcome this difficulty, some researchers
try to design distributed observers to provide the estimates of the
LVMs for each follower in [10,15,16]. Furthermore, to improve the
convergence rate of the observers and avoid the shortcoming of the
finite-time control, fixed-time distributed observers for the lea-
der’s states (LSs) are established in [9,10,17]. However, most dis-
tributed leader states observers are designed under connected
topologies, which means that the information sharing among the
followers is bidirectional and sets high demand on the communi-
cation channel. In fact, digraph communication topology costs less
resources and has a less requirement on the communication equip-
ment [9]. Great efforts have been made in [9,17] to extend the
existing results to the digraph cases, which are very meaningful.
However, both the leader’s position measurements (LPMs) and
LVMs are indispensable [9,17]. In [11,12], cascaded fixed-time lea-
der state observers are conducted for each follower to acquire the
estimates of the LPMs and LVMs in a fixed time without LVMs.
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However, the communication topologies are assumed to be con-
nected in [11,12]. Therefore, the leader state fixed-time observer
design problem without the LVMs under directed topologies still
remains open. It is really challenging to extend the existing results
to design such an observer since the analysis of the fixed-time sta-
bility is very complex. Besides, asymmetric topology property also
brings great difficulties to the observer design and stability
analysis.

The existences of uncertainties [18,19], disturbance [20] and so
on, may deteriorate the formation control performance, and even
result in instabilities of the closed-loop formation control systems.
To deal with uncertainties, radial basis function neural networks
(RBFNNs) are widely utilized in the cooperative control of MASs
[21–24]. Nevertheless, it should be pointed out that a huge number
of adaptive parameters need to be updated online in the majority
of the existing conditional RBFNN based adaptive control, which
may be time-consuming and burdensome in reality. Aimed at solv-
ing this problem, minimal learning parameter (MLP) technique is
adopted in [25,26] for the hypersonic vehicle control. Then, some
researchers use MLP technique to deal with the uncertainty prob-
lem in the cooperative control for MASs, and to decrease the num-
ber of the adaptive parameters simultaneously [27]. However, the
assumption of the boundedness of the weight error matrix’s norm
needs to be satisfied in [27], which may be unreasonable in theory.
MLP technique is also used to deal with the uncertainty problem in
[23]. However, this result only achieves the boundedness of the
tracking error and severely depends on the accurate LVMs. Such
situation can result in the instability of formation control system
and even the failure of the formation task when the precise LVMs
are difficult to obtain.

As far as we know, the problem of adaptive time-varying forma-
tion tracking control for MASs with uncertainties in fixed-time
framework under directed topologies and without the LVMs still
needs to be investigated. Inspired by the aforementioned facts,
we propose a novel adaptive formation tracking control scheme
in fixed-time framework for MASs on the basis of MLP techniques
and cascaded fixed-time state observer (CFTSO) without LVMs.
First, a novel CFTSO under directed topologies is designed for each
follower so that each follower can acquire the estimates of the LSs
without LVMs in a fixed time. Second, MLP techniques based on
RBFNNs are adopted to deal with the unknown uncertainties and
lessen the calculative burden simultaneously. Finally, a fixed-
time adaptive control scheme with the proposed CFTSO and MLP
is constructed to deal with the time-varying formation tracking
control problem in presence of uncertainties and in absence of
LVMs under directed topologies. The highlights of this paper can
be summarized as follows:

1) The proposed formation control scheme and CFTSO are con-
structed under directed topologies. In fact, the majority of
the existing distributed observers are established under con-
nected topologies [10–12], where the stability analysis is
much easier due to the symmetric and positive definite
property of the Laplacian matrix of the connected graphs.
Hence, it is really nontrivial to construct the CFTSO under
directed topologies. In addition, different from the dis-
tributed fixed-time observer [9,17,28], there is no discontin-
uous term in the proposed CFTSO, which will not cause the
chattering problem. Furthermore, since the CFTSO is con-
structed such that each follower can get the estimates under
directed topologies within a fixed time, the whole formation
control scheme can work under directed topologies. The
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results in [29–31] propose consensus control protocols
under directed topologies. However, the control inputs of
the neighbor agents are necessary, which may be hard to
be implemented in practice.

2) This paper addresses the time-varying formation control
problem in fixed-time framework for MASs without the
LVMs. In comparison with the available fixed-time consen-
sus and formation control scheme in [9,10,17,28,32,33], the
presented fixed-time formation control scheme can also
operate well without the LVMs since the novel CFTSO pro-
posed in this paper can get the estimates of the LSs within
a fixed time.

3) The proposed time-varying formation control scheme for
MASs on the basis of MLP and CFTSO can realize the
expected time-varying formation in a fixed time in presence
of unknown uncertainties. Different from the results in
[11,21,23,24], the proposed control scheme in this paper
can drive the formation tracking errors to a small region
around the origin within a fixed time instead of being ulti-
mately uniformly bounded (UUB). Compared to the result
in [27], the proposed formation control scheme is able to
realize the fixed-time convergence for MASs with uncertain-
ties in absence of the LVMs under directed topologies. Fur-
thermore, the number of the adaptive parameters can be
reduced to a great extent due to the application of MLP tech-
niques. As a result, the proposed control scheme overcomes
the drawbacks of the existing results and is really practical
and novel.

The remainder of this paper is organized as follows. Problem
description and preliminaries are introduced in Sections 2 and 3,
respectively. Formation tracking control scheme design is pre-
sented in Section 4. Numerical simulation results are given in Sec-
tion 5. Conclusions are drawn in Section 6.
2. Preliminaries

In this paper, the MASs with one leader and N followers are con-
sidered. The dynamics of the ith follower are described as

_xi ðtÞ ¼ v i ðtÞ;
v
_

iðtÞ ¼ f i ðxiðtÞ; v iðtÞÞ þ ui ðtÞ; i ¼ 1;2; � � �N;

(
ð1Þ

where xiðtÞ 2 Rm and v iðtÞ 2 Rm stand for the position and velocity
state vectors of the ith follower, respectively; m is the dimension
of the state vectors xiðtÞ 2 Rm and v iðtÞ;uiðtÞ 2 Rm represents the
control input vector; f iðxiðtÞ;v iðtÞÞ : R2m ! Rm denotes an unknown
and continuous function vector.

The leader is modeled as

_x0 ðtÞ ¼ v0 ðtÞ;
v
_

0 ðtÞ ¼ u0 ðtÞ;

(
ð2Þ

where x0ðtÞ 2 Rm and v0ðtÞ 2 Rm are position and velocity state vec-
tors of the leader, respectively; u0ðtÞ 2 Rm represents the control
input vector.

For the ith follower, we denote piecewise continuously differen-

tiable function vector hiðtÞ ¼ ½hT
xiðtÞ;hT

viðtÞ�
T 2 R2m with

_hxiðtÞ ¼ hviðtÞ as the command vector, which is used to describe
the expected time-varying formation shape.
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Let vector diðtÞ ¼ ½dTxiðtÞ; dTviðtÞ�
T 2 R2m be the formation tracking

error vector, where dxiðtÞ ¼ xiðtÞ � x0ðtÞ � hxiðtÞ and dviðtÞ ¼ v iðtÞ�
v0ðtÞ � hviðtÞ are formation tracking position error vector and
velocity error vector, respectively. In addition, define dxðtÞ ¼
½dTx1ðtÞ; dTx2ðtÞ; . . . ; dTxNðtÞ�

T
and dv ðtÞ ¼ ½dTv1ðtÞ; dTv2ðtÞ; . . . ; dTvNðtÞ�

T
.

The control objective of the current paper is to propose an adap-
tive formation tracking control scheme in fixed-time framework
based on a fixed-time observer so that the formation tracking error
diðtÞ is able to converge to a small region around the origin in a
fixed time under directed topologies without the LVMs, which
means the expected time-varying formation of MASs (1) and (2)
with uncertainties is realized in a fixed time.

Moreover, we made the following reasonable assumptions:

Assumption 1. u0ðtÞ is assumed to be acquired by the followers.
Assumption 2. The graph Gamong the followers and the leader
contains a spanning tree with the leader being the root node.
3. Fixed-time formation tracking control scheme design

In this section, firstly, a novel CFTSO is put forward to recon-
struct the states of the leader in a fixed time. The, MLP method
based on RBFNNs is utilized to cope with the uncertainties. Finally,
a new formation tracking scheme based on CFTSO and MLP in
fixed-time framework is established for the MASs. The block dia-
gram of the overall formation control scheme is displayed in
Fig. 1. Firstly, the CFTSO is designed for each follower to provide
the estimates of the LSs in a fixed time. Then, combining the CFTSO
and MLP techniques which is utilized to deal with the uncertain-
ties, a fixed-time adaptive control law deduced by backstepping
method is proposed to achieve the time-varying formation tracking
in a fixed-time. In addition, for simplicity, we omit ðtÞ for all the
variables in the rest of this paper.

3.1. Cascaded fixed-time state observer for the leader under directed
topologies

In this subsection, a new CFTSO is constructed for each follower
to estimate the LSs x0 and v0 in a fixed time under directed topolo-
gies without the LVMs.

Let x̂0i and v̂0i represent the estimates of x0 and v0 for the ith fol-
lower, respectively. The CFTSO is designed as:
Fig. 1. The block diagram of the overall formation control scheme.
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_̂x0i ¼ v̂0i þ jxd
XN
j¼1

aijðx̂0j � x̂0iÞ þ biðx0 � x̂0iÞcq1

þqxd
XN
j¼1

aijðx̂0j � x̂0iÞ þ biðx0 � x̂0iÞcq2 ;

_̂v0i ¼ jvd
X
v j2Ni

aijðv̂0j � v̂0iÞ þ biðzv � v̂0iÞcq1

þqvd
XN
j¼1

aijðv̂0j � v̂0iÞ þ biðzv � v̂0iÞcq2 þ u0;

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

ð3Þ

where the observer gains jx;jv ;qx;qv > 0, the constant
q1 > 1; q2 < 1. Function dxca ¼ jxjasignðxÞ, where sign(x) is signum
function with respect of x with x 2 R. bi denotes the information
sharing between the ith follower and the leader. bi ¼ 1 if and only
if the ith follower can receive the state information from the leader;
otherwise bi ¼ 0. Moreover, we set aij ¼ 1; j– i if and only if the jth
follower can deliver the state information to the ith follower; other-
wise aij ¼ 0. zv is the estimate of v0 for the ith follower with bi ¼ 1,
which is acquired by the following fixed-time observer:

_zx ¼ zv � a1dzx � x0cm1 � b1dzx � x0cm2 ;

_zv ¼ u0 � a2dzx � x0cm3 � b2dzx � x0cm4 ;

(
ð4Þ

where zx is the estimate of x0 for the ith followers with bi ¼ 1. The
observer parameters m1;m2;m3;m4 > 0 satisfy m1;m3 2 ð0;1Þ;
m2;m4 > 1 and m3 ¼ 2m1 � 1;m4 ¼ 2m2 � 1 with m1 2 ð1� �1;1Þ
and m2 2 ð1;1þ �2Þ for sufficiently small constants �1 and �2. Other
observer gains a1;a2; b1;b2 > 0 are selected to make the matrices A1

and A2 meet the Hurwitz condition, where A1 and A2 are

A1 ¼ �a1 1
�a2 0

� �
, A2 ¼ �b1 1

�b2 0

� �
.

Remark 1. For the ith follower satisfying bi ¼ 1, only fixed-time
observer (4) is needed to obtain the estimates of x0 and v0 within a
fixed time. For the ith follower satisfying bi ¼ 0, the fixed-time
observer (3) and (4) are necessary. Besides, the input of observer
(3) zv is acquired by (4). Therefore, fixed-time observers (3) and (4)
constitute the CFTSO to provide the estimates of x0 and v0 for each
follower within a fixed time with no need for the LVMs.
Remark 2. Due to the cascaded structure of the proposed obser-
ver, the CFTSO consisting of (3) and (4) is able to obtain the esti-
mates of x0 and v0 within a fixed time only dependent on LPMs,
while both position and velocity measurements are indispensable
in the fixed-time distributed observers in [9,10,17,28,32]. Note that
the outputs of the observer (4) zx and zv can only be obtained by
the followers which are directly accessible to the leader informa-
tion, while the other followers cannot due to the distributed man-
ner. Thus, distributed observer (3) is necessary for the ith follower
with bi ¼ 0 since it is unreasonable to share zx and zv among the
followers.
Remark 3. The proposed CFTSO is established under directed
topologies, which is a really sounding innovation compared to
the cascaded fixed-time observers in [11,12]. Furthermore, any dis-
continuous item does not exist in the proposed CFTSO in this
paper, while discontinuous items signð�Þ exist in the fixed-time dis-
tributed observers in [9,17,28]. Therefore, the proposed CFTSO is
really practical and robust in practice.
Theorem 1. Suppose Assumptions 1 and 2 hold. Then, each follower
can acquire the estimates of the LSs by the proposed CFTSO consisting
of (3) and (4) within a fixed time.
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Proof 1. The proof proceeds in three steps.
Step 1. In this step, it will be proved that the ith follower with

bi ¼ 1 can acquire the estimates of the LSs in a fixed time by means
of observer (4). Define ~zx ¼ zx � x0 and ~zv ¼ zv � v0. Invoking (2)
and (4), we can get

_~zx ¼ ~zv � a1d~zxcm1 � b1d~zxcm2 ;

_~zv ¼ �a2d~zxcm3 � b2d~zxcm4 :

(
ð5Þ

Then, on the basis of the result in [34], we can conclude that ~zx
and ~zv will converge to the origin within fixed time T1, which is
bounded by

T1 6 k2�m1
max ðP1Þ

ð1�m1ÞkminðQ1Þ
þ kmaxðP2Þ
ðm2 � 1ÞkminðQ2Þiq0�1 ; ð6Þ

where matrices P1; P2;Q1;Q2 are positive definite and satisfy
P1A1 þ AT

1P1 ¼ �Q1; P2A2 þ AT
2P2 ¼ �Q2. Positive constant i satisfies

i 6 kminðP2Þ.
Step 2. Define observation errors as ~x0i ¼ x̂0i � x0 andev 0i ¼ v̂0i � v0. Since zv ¼ v0 when t P T1, we define auxiliary

observation errors as ~x0i ¼ x̂0i � x0 and ~v0i ¼ v̂0i � zv . In this step,
we prove that ~x0i and ~v0i are bounded at any finite time interval
½t0; t�. Then, the dynamics of ~x0i and ~v0i can be written as

_~x0i ¼ ~v0i þ jxd
XN
j¼1

aijð~x0j � ~x0iÞ � bi~x0icq1

þqxd
XN
j¼1

aijð~x0j � ~x0iÞ � bi~x0icq2 ;

_~v0i ¼ jvd
XN
j¼1

aijðv̂0j � v̂0iÞ þ biðzv � v̂0iÞcq1 þ u0

þqvd
XN
j¼1

aijðv̂0j � v̂0iÞ þ biðzv � v̂0iÞcq2 � _zv :

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

ð7Þ

Let vectors gx ¼ ½~xT01; ~xT02; . . . ; ~xT0N�T and gv ¼ ½~vT
01; ~vT

02; . . . ; ~vT
0N�T .

Then, (7) can be written in a compact form as follows:

_gx ¼ gv � jxdHgxcq1 � qxdHgxcq2 ;
_gv ¼ �jvdHgvcq1 � qvdHgvcq2 þ �u0 � �zv ;

(
ð8Þ

where matrices B ¼ diagfbig and �B ¼ B� Im;H ¼ ðLþ BÞ � Im where

L ¼ diagfPN
j¼1aijg � A with A ¼ ½aij� 2 RN�N; vectors �u0 ¼ 1N � u0 and

�zv ¼ 1N � _zv .
In addition, we define the following local neighborhood obser-

vation errors:

exi ¼
XN
j¼1

aijð~x0i � ~x0jÞ þ bi~x0i;

evi ¼
XN
j¼1

aijð~v0i � ~v0jÞ þ bi~v0i:

8>>>>><>>>>>:
ð9Þ

Taking the derivative of exi and evi with respect to time t yields

_exi ¼ evi � jxð
XN
j¼1

aijðdexicq1 � dexjcq1 Þ þ bidexicq1 Þ

�qxð
XN
j¼1

aijðdexicq2 � dexjcq2 Þ þ bidexicq2 Þ;

_evi ¼ �jvð
XN
j¼1

aijðdevicq1 � devjcq1 Þ þ bidev icq1 Þ

�qvð
XN
j¼1

aijðdevicq2 � dev jcq2 Þ þ bidevicq2 Þ

�bi
_~zv :

8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:

ð10Þ
486
Construct the following Lyapunov function:

V ¼
XN
i¼1

pið jx
q1þ1 jexijq1T jexij þ qx

q2þ1 jexijq2T jexijÞ

þ
XN
i¼1

pið jv
q1þ1 jevijq1T jevij þ qv

q2þ1 jevijq2T jevijÞ

¼ V1 þ V2;

ð11Þ

where V1 ¼PN
i¼1pið jx

q1þ1 jexijq1T jexij þ qx
q2þ1 jexijq2T jexijÞ, and

V2 ¼PN
i¼1ðpi

jv
q1þ1 jevijq1T jev ij þ qv

q2þ1 jevijq2T jevijÞ. pi is defined as the ith

element of vector ½p1;p2; . . . ; pN�T ¼ ðLþ BÞ�T1N . In addition, let
P ¼ diagfp1; p2; . . . ;pNg � Im and Q ¼ 1

2 ðPH þ HTPÞ. Then, according
to Lemma 1 in [9], the matrices P and Q are both positive definite.
Thus, we have

_V ¼
XN
i¼1

piðjxdexicq1 þ qxdexicq2 Þ
T ½evi � jxð

XN
j¼1

aij�

ðdexicq1 � dexjcq1 Þ þ bidexicq1 Þ�

�
XN
i¼1

piðjxdexicq1 þ qxdexicq2 Þ
T ½qxð

XN
j¼1

aij�

ðdexicq2 � dexjcq2 Þ þ bidexicq2 Þ�

�
XN
i¼1

piðjvdev icq1 þ qvdevicq2 Þ
T�

½jvð
XN
j¼1

aijðdevicq1 � devjcq1 Þ þ bidevicq1 Þ�

�
XN
i¼1

piðjvdev icq1 þ qvdevicq2 Þ
T ½qvð

XN
j¼1

aij�

ðdevicq2 � devjcq2 Þ þ bidevicq2 Þ�

�
XN
i¼1

piðjvdev icq1 þ qvdevicq2 Þ
T
bi
_~zv :

By further computing, we can get

_V ¼
XN
i¼1

piðjxdexicq1 þ qxdexicq2 Þ
Tevi � jxdexcq1

�
þqxdexcq2

�T
PHðjxdexcq1 þ qxdexcq2 Þ

�ðjvdevcq1 þ qvdevcq2 Þ
T
PH jvdevcq1
�

þqvdevcq2
��XN

i¼1

piðjvdevicq1 þ qvdevicq2 Þ
T
bi
_~zv :

From Lemma 1 in [9], we can get that �ðjxdexcq1þ qxdexcq2 ÞT
PHðjxdexcq1 þ qxdexcq2 Þ � ðjvdevcq1 þ qvdevcq2 Þ

T � PHðjvdevcq1þ
qvdevcq2 Þ 6 0. Then, the derivative of V turns into

_V 6
XN
i¼1

piðjxdexicq1 þ qxdexicq2 Þ
Tevi

�
XN
i¼1

piðjvdevicq1 þ qvdevicq2 Þ
T
bi
_~zv

6 c1V �
XN
i¼1

piðjvdev icq1 þ qvdevicq2 Þ
T
bi
_~zv :

ð12Þ

where c1 ¼ bðq1 þ 1Þ with b ¼ maxfjx ;qxg
minfjx ;jv ;qx ;qv g. The last inequality is

derived from the fact jexijq1Tevi 6 jexijq1T jexij þ jev ijq1T jevij and
jexijq2Tevi 6 jexijq2T jexij þ jevijq2T jevij.
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According to Step 1, ~zv is able to converge to the origin in a fixed

time. Thus, ~zv is bounded all the time. Then, bik _~zvk1 6 c2 holds for
a constant c2 > 0. Hence, we have

_V 6 c1V þ c2
XN
i¼1

piðjvkeq1vi k1 þ qvkeq2vi k1Þ: ð13Þ

Let evil be the lth element of the vector evi; l ¼ 1;2; . . . ;m. If
jevilj P 1;8l 2 f1;2; . . . ;mg, we have c2

PN
i¼1piðjvkeq1vi k1þ

qvkeq2vi k1Þ 6 c2
PN

i¼1pi ðjv jevijq1 þ qv jevijq2 Þ
T jevij 6 ðq1 þ 1Þc2V .

If

jevilj 6 1;8l 2 f1;2; . . . ;mg; c2
PN

i¼1piðjvkeq1vik1 þ qvkeq2v ik1Þ 6 Bd

holds for a positive constant Bd.

For a more general case, that is, if jevilj 6 1 holds just for some l.

Then, we can get that c2
PN

i¼1piðjvkeq1vik1 þ qvkeq2v ik1Þ 6
ðq1 þ 1Þc2V þ Bd. Therefore, it can be obtained

_V 6 ðq1 þ 1Þc2V þ Bd: ð14Þ
By solving the above inequality, we can easily get

V 6 � Bd

ðq1 þ 1Þc2
þ ðVðt0Þ þ Bd

ðq1 þ 1Þc2
Þeðq1þ1Þc2ðt�t0Þ: ð15Þ

As a result, by inequality (15), the boundedness of Vat any finite
time interval ½t0; t� can be obtained.

Step 3. In this step, we verify that the observation errors ~x0i and
�~v0i are able to converge to the origin within fixed time T0. From
Step 1, it follows that ~zx ¼ ~zv ¼ 0;8t P T1. Then, for t P T1, the
dynamics of exi and evi reduce to

_exi ¼ evi � jxð
XN
j¼1

aijðdexicq1 � dexjcq1 Þ þ bidexicq1 Þ

�qxð
XN
j¼1

aijðdexicq2 � dexjcq2 Þ þ bidexicq2 Þ;

_evi ¼ �jvð
XN
j¼1

aijðdevicq1 � devjcq1 Þ þ bidev icq1 Þ

�qvð
XN
j¼1

aijðdevicq2 � dev jcq2 Þ þ bidevicq2 Þ:

8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:

ð16Þ

Firstly, consider the Lyapunov function candidate V2. Its deriva-
tive with respect to time t can be written as

_V2 6 �
XN
i¼1

piðjvdevicq1 þ qvdev icq2 Þ
T�

½jvð
XN
j¼1

aijðdevicq1 � devjcq1 Þ þ bidev icq1 Þ�

�
XN
i¼1

piðjvdevicq1 þ qvdev icq2 Þ
T�

½qvð
XN
j¼1

aijðdevicq2 � dev jcq2 Þ þ dev icq2 Þ�

¼ �ðjvdevcq1 þ qvdevcq2 Þ
T
PH�

ðjvdevcq1 þ qvdevcq2 Þ

6 �kminðQÞðj2
v

XN
i¼1

eq1Tvi e
q1
vi þ 2jvqv

XN
i¼1

eq1Tvi e
q2
vi

þq2
v

XN
i¼1

eq2Tv i e
q2
vi Þ:

ð17Þ

Let W1 ¼ j2
v
PN

i¼1e
q1T
vi e

q1
vi þ 2jvqv

PN
i¼1e

q1T
vi e

q2
vi þ q2

v �
PN

i¼1e
q2T
vi e

q2
vi ,

we can get
487
_V2 6 �kminðQÞW1: ð18Þ

In addition, we define the following terms: W2 ¼ V
2q1
q1þ1

2 ¼

½PN
i¼1ðpi

jv
q1þ1 jevijq1T jevij þ pi

qv
q2þ1 jevijq2T jevijÞ�

2q1
q1þ1 and W3 ¼ V

2q2
q2þ1

2 ¼PN
i¼1ðpi

jv
q1þ1 jevijq1T jevij þ pi

qv
q2þ1 jevijq2T�

h
jevijÞ�

2q2
q2þ1.

By employing Lemmas 3 and 4 in [17], we have

W2 6 2
q1�1
q1þ1

XN
i¼1

pi
jv

q1þ1 jevijq1T jevij
 ! 2q1

q1þ1

þ2
q1�1
q1þ1

XN
i¼1

pi
qv

q2þ1 jevijq2T jev ij
 ! 2q1

q1þ1

6 2
q1�1
q1þ1½ pM

jv
q1þ1

� � 2q1
q1þ1

XN
i¼1

kevik1
 !2q1

þ pM
qv

q2þ1

� � 2q1
q1þ1

XN
i¼1

kevik1
 !2q1 ðq2þ1Þ

q1þ1

�;

ð19Þ

where pM ¼ maxfpig; i ¼ 1;2; . . . ;N.

W3ðeviÞ 6
XN
i¼1

pi
jv

q1þ1 jev ijq1T jevij
 ! 2q2

q2þ1

þ
XN
i¼1

pi
qv

q2þ1 jevijq2T jevij
 ! 2q2

q2þ1

6 pM
jv

q1þ1

� � 2q2
q2þ1

XN
i¼1

kevik1
 !2q2ðq1þ1Þ

q2þ1

þ pM
qv

q2þ1

� � 2q2
q2þ1

XN
i¼1

kevik1
 !2q2

:

ð20Þ

On behalf of verifying the fixed-time convergence of evi, the fol-
lowing two cases need to be considered:

Case 1: If 0 < q2 < 1
2, then 0 < 2q2 < 1. From Lemmas 3 and 4 in

[17], we obtain

W1ðeviÞ P j2
vðNmÞ1�2q1 ð

XN
i¼1

kevik1Þ
2q1

þ2jvqvðNmÞ1�q1�q2 ð
XN
i¼1

kevik1Þ
q1þq2

þq2
vð
XN
i¼1

kevik1Þ
2q2

:

ð21Þ

If
PN

i¼1kevik1 6 1, on one hand, we have

W1ðeviÞ P k1ð
PN

i¼1kevik1Þ
2q2 with k1 ¼ q2

v ; on the other hand, due

to the fact 2q1 P 2q1ð2q2þ1Þ
q1þ1 P 2q2 and 2q2ð2q1þ1Þ

q2þ1 P 2q2, we get

ðPN
i¼1kevik1Þ

2q1 6 ðPN
i¼1kev ik1Þ

2q2
; ðPN

i¼1kevik1Þ
2q1 ð2q2þ1Þ

q1þ1 6 ðPN
i¼1kevik1Þ

2q2 ,

as well as ðPN
i¼1kevik1Þ

2q2 ð2q1þ1Þ
q2þ1 6 ðPN

i¼1kevik1Þ
2q2 .

Thus, we can obtain

_V2 6 �k1
XN
i¼1

kevik1
 !2q2

6 �D1 ðV2Þ
2q1
q1þ1 þ ðV2Þ

2q2
q2þ1

� �
;

ð22Þ

where D1 ¼ k1
X with X ¼ pM

jv
q1þ1

� � 2q2
q2þ1þ pM

qv
q2þ1

� � 2q2
q2þ1þ

2
q1�1
q1þ1 pM

jv
q1þ1

� � 2q1
q1þ1þ 2

q1�1
q1þ1 pM

qv
q2þ1

� � 2q1
q1þ1

.
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If
PN

i¼1kevik1 > 1, on one hand, we have

W1ðev iÞ P �k1ð
PN

i¼1kevik1Þ
2q1 with �k1 ¼ j2

v ðNmÞ1�2q1 ; on the other

hand, due to the fact 2q1 P 2q1ð2q2þ1Þ
q1þ1 P 2q2 and 2q1 P 2q2ð2q1þ1Þ

q2þ1 , we

get ðPN
i¼1kev ik1Þ

2q2

6 ðPN
i¼1kev ik1Þ

2q1
; ðPN

i¼1kevik1Þ
2q1ð2q2þ1Þ

q1þ1 6 ðPN
i¼1kev ik1Þ

2q1 , and

ðPN
i¼1kev ik1Þ

2q2 ð2q1þ1Þ
q2þ1 6 ðPN

i¼1kev ik1Þ
2q1 .

Similarly, we get

_V2 6 ��k1
XN
i¼1

kev ik1
 !2q2

6 ��D1 ðV2Þ
2q1
q1þ1 þ ðV2Þ

2q2
q2þ1

� �
;

ð23Þ

where �D1 ¼ �k1
X .

Case 2: If 1
2 6 q2 < 1, then 2q2 P 1. According to Lemmas 3 and

4 in [17], we obtain

W1ðev iÞ P j2
vðNmÞ1�2q1 ð

XN
i¼1

kevik1Þ
2q1

þq2
vðNmÞ1�2q2 ð

XN
i¼1

kevik1Þ
2q2

þ2jvqvðNmÞ1�q1�q2 ð
XN
i¼1

kevik1Þ
q1þq2

:

ð24Þ

If
PN

i¼1kevik1 6 1, on one hand, we get

W1ðeviÞ P k2ð
PN

i¼1kevik1Þ
2q2 with k2 ¼ q2

v ðNmÞ1�2q2 ; on the other

hand, it can be easily obtained that ðPN
i¼1kevik1Þ

2q1

6 ðPN
i¼1kevik1Þ

2q2
; ðPN

i¼1kevik1Þ
2q1 ð2q2þ1Þ

q1þ1 6 ðPN
i¼1kevik1Þ

2q2 , and

ðPN
i¼1kevik1Þ

2q2 ð2q1þ1Þ
q2þ1 6 ðPN

i¼1kevik1Þ
2q2 .

Thus, we can obtain

_V2 6 �k2
XN
i¼1

kev ik1
 !2q2

6 �D2 ðV2Þ
2q1
q1þ1 þ ðV2Þ

2q2
q2þ1

� �
;

ð25Þ

where D2 ¼ k2
X .

If
PN

i¼1kevik1 > 1, on one hand, we can get

W1ðev iÞ P �k2ð
PN

i¼1kevik1Þ
2q1 with �k2 ¼ �k1; on the other hand, we

have ðPN
i¼1k

evik1Þ2q2 6 ðPN
i¼1kev ik1Þ

2q1
; ðPN

i¼1kev ik1Þ
2q2 ð2q1þ1Þ

q2þ1 6 ðPN
i¼1kev ik1Þ

2q1 ,

as well as ðPN
i¼1kev ik1Þ

2q1 ð2q2þ1Þ
q1þ1 6 ðPN

i¼1kev ik1Þ
2q1 .

Similarly, we get

V
_

2 6 �k
�
2
PN
i¼1

kevik1
� 	2q2

6 �D
�
2 ðV2Þ

2q1
q1þ1 þ ðV2Þ

2q2
q2þ1

� �
;

ð26Þ

where �D2 ¼ �k2
X .

Combining the above cases, we can obtain

V
_

2 6 �D ðV2Þ
2q1
q1þ1 þ ðV2Þ

2q2
q2þ1

� �
; ð27Þ

where
488
D ¼ minfD1; �D1g; if 0 6 q2 < 1
2 ;

minfD2; �D2g; rmif 1
2 6 q2 < 1:

(
ð28Þ

Therefore, from Lemma 2 in [17] and inequality Eqn 27, we can
conclude that evi will converge to the origin within fixed time T2,
which is bounded by

T2 6 ðq1 þ 1Þ
Dðq1 � 1Þ þ

ðq2 þ 1Þ
Dð1� q2Þ

: ð29Þ

After the convergence of evi, the dynamics of exi can be rewritten
as

e
_

xi ¼ �jxð
PN
j¼1

aijðdexicq1 � dexjcq1 Þ þ bidexicq1 Þ

�qxð
PN
j¼1

aijðdexicq2 � dexjcq2 Þ þ bidexicq2 Þ:
ð30Þ

Similarly, we obtain that the exi can converge to the origin
within T3 after the convergence of evi, which is bounded by

T3 6 ðq1 þ 1Þ
~Dðq1 � 1Þ þ

ðq2 þ 1Þ
~Dð1� q2Þ

: ð31Þ

In this inequality,

~D ¼ minfD3; �D3g; if 1
2 6 q2 < 1

2 ;

minfD4; �D4g; if 1
2 6 q2 < 1;

(
ð32Þ

where D3 ¼ k3
~X
; �D3 ¼ �k3

~X
;D4 ¼ k4

~X
and �D4 ¼ �k4

~X
with ~X ¼ pM

jx
q1þ1

� � 2q2
q2þ1þ

pM
qx

q2þ1

� � 2q2
q2þ1 þ 2

q1�1
q1þ1 pM

jx
q1þ1

� � 2q1
q1þ1 þ 2

q1�1
q1þ1 pM

qx
q2þ1

� � 2q1
q1þ1

; k3 ¼ q2
x ;
�k3 ¼

j2
x ðNmÞ1�2q1 ; k4 ¼ q2

x ðmNÞ1�2q2 , and �k4 ¼ �k3.
Thus, from the above analysis, it can be proved that ex and ev

will converge to the origin in fixed time T0 ¼ T1 þ T2 þ T3. From
Lemma 1 in [9], matrix H is invertible. Then, gx and gv can
converge to the origin within fixed time T0 due to ex ¼ Hgx and
ev ¼ Hgv . Furthermore, due to zv ¼ v0 when t P T1, the observa-
tion errors ~x0 and �~v0 will converge to the origin in fixed time T0.

As a result, the proposed CFTSO can provide the estimates of the
LSs x0 and v0 for each follower under directed topologies without
the LVMs within fixed time T0. This completes the proof.
3.2. Radial basis function neural network and minimal learning
parameter technique

It is assumed that the uncertain term f iðxi;v iÞ 2 Rm can be
described on a prescribed compact set P 2 R2m by

f iðxi; v iÞ ¼ xT
i /iðxi;v iÞ1m þ ei; ð33Þ

where /i ¼ diagð/i;1;/i;2; . . . ;/i;mÞ 2 Rmfi�m with

/i;l ¼ ½/T
i;l;1;/

T
i;l;2; . . . ;/

T
i;l;fi

�T 2 Rfi being a set of fi Gaussian functions

with l ¼ 1;2; . . . ;m. xi ¼ diagðxi;1;xi;2; . . . ;xi;mÞ 2 Rmfi�m is the
ideal RBFNN weight matrix with xi;l 2 Rfi , and ei is the RBFNN
approximation error vector. In real applications, the approximation
of f i can be given by

f̂ iðxi; v iÞ ¼ x̂T
i /iðxi;v iÞ1m; ð34Þ

where x̂i ¼ diagðx̂i;1; x̂i;2; . . . ; x̂i;mÞ 2 Rmfi�m with x̂i;l 2 Rfi is the
current estimate vector of the RBFNN weight for the ith follower.

In addition, we define the error matrix of the RBFNN weights as
~xi ¼ xi � x̂i.
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Remark 4. According to Stone-Weierstrass approximation theo-
rem, there exist positive constants /M;WM; eM , such that
k/ikF 6 /M ; kwikF 6 WM and keik2 6 eM .

To reduce the computation burden, in this paper, MLP tech-
nique is employed. Define hi ¼ diagfhi;1; hi;2; . . . ; hi;mg with

hi;l ¼ kxi;lk22; l ¼ 1;2; . . . ;m. Let ĥi ¼ diagfĥi;1; ĥi;2; . . . ; ĥi;mg, where

ĥi;l is the approximation of hi;l. Therefore, the weight vector x̂i;l is

converted to its norm parameter ĥi;l, which can decrease the num-
ber of the adaptive parameters significantly. Then, according to
Remark 4, khikF 6 hM holds for a positive constant hM .

3.3. Fixed-time time-varying formation control scheme design and
analysis

Firstly, the formation tracking control law will be proposed by
adopting backstepping method. Then, the fixed-time stability of
the closed-loop MAS with uncertainties will be given.

For the ith follower, define the auxiliary formation tracking
position and velocity error vectors exi and evi as

exi ¼ xi � hxi � x̂0i ¼ xi � hxi � ~x0i � x0;

evi ¼ v i � hvi � v̂0i ¼ v i � hvi � ~v0i � v0 � ~zv :



ð35Þ

Substituting (5) and (7) into (35), the dynamics of exi and evi for
the ith follower is

_exi ¼ evi � jxd
XN
j¼1

aijð~x0j � ~x0iÞ � bi~x0icq1

�qxd
XN
j¼1

aijð~x0j � ~x0iÞ � bi~x0icq2 þ ~zv ;

_evi ¼ �jvd
XN
j¼1

aijðv̂0j � v̂0iÞ þ biðzv � v̂0iÞcq1

�qvd
XN
j¼1

aijðv̂0j � v̂0iÞ þ biðzv � v̂0iÞcq2

þf i þ ui � _hvi � biu0; i ¼ 1;2; . . . ;N:

8>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>:

ð36Þ

Firstly, choose evi as the virtual control input. The virtual control
law ri is designed as

ri ¼ �k1dexicl1 � k2dexicl2 ; ð37Þ
where k1; k2 > 0;l1 > 1;0 < l2 < 1.

Select a Lyapunov candidate function as

V3 ¼ 1
2
eTxiexi: ð38Þ

The time differentiation of (38) is deduced as follows

_V3 ¼ eTxið�k1dexicl1 � k2dexicl2

�jxd
XN
j¼1

aijð~x0j � ~x0iÞ � bi~x0icq1

�qxd
XN
j¼1

aijð~x0j � ~x0iÞ � bi~x0icq2 þ ~zvÞ:

ð39Þ

According to Theorem 1, both exi and ~zv are always bounded.
Therefore, through adopting Young’s inequality, there exists a con-
stant .1 > 0 so that the following inequality holds

eTxið�jxd
XN
j¼1

aijð~x0j � ~x0iÞ � bi~x0icq1

�qxd
XN
j¼1

aijð~x0j � ~x0iÞ � bi~x0icq2 þ ~zvÞ

6 1
2 e

T
xiexi þ .1:

ð40Þ
489
Utilizing Lemmas 3 and 4 in [17], and on the basis of the fact

that V3 6 V
l1þ1

2
3 þ V

l2þ1
2

3 ; _V3 turns into

_V3 6 �2
l1þ1

2 m
1�l1

2 k1V
l1þ1

2
3 � 2

l2þ1
2 k2V

l2þ1
2

3

þV3 þ .1

6 �ð2
l1þ1

2 m
1�l1

2 k1 � 1ÞV
l1þ1

2
3

�ð2
l2þ1

2 k2 � 1ÞV
l2þ1

2
3 þ .1:

ð41Þ

According to the above inequality and Lemma 2.2 in [27], exi
will converge to a small neighborhood of the origin within a fixed

time if the following two conditions that 2
l1þ1

2 m
1�l1

2 k1 � 1 > 0 and

2
l2þ1

2 k2 � 1 > 0 are satisfied.
Then, the following nonlinear nonsmooth filter is introduced to

deal with the explosion of complexity problem:

si _rdi ¼ dri � rdicl1 þ dri � rdicl2 ;rdiðt0Þ ¼ riðt0Þ; ð42Þ
where si is a small positive constant and the state rid is the output
of the filter.

Define the tracking error as �evi ¼ evi � rdi. The dynamics of exi
and �evi are written as

_exi ¼ �ev i þ rid � jxd
XN
j¼1

aijð~x0j � ~x0iÞ � bi~x0icq1

�qxd
XN
j¼1

aijð~x0j � ~x0iÞ � bi~x0icq2 þ ~zv ;

_�evi ¼ �jvd
XN
j¼1

aijðv̂0j � v̂0iÞ þ biðzv � v̂0iÞcq1

�qvd
XN
j¼1

aijðv̂0j � v̂0iÞ þ biðzv � v̂0iÞcq2

þf i þ ui � _hvi � _rid � biu0; i ¼ 1;2; . . . ;N:

8>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>:

ð43Þ

Thus, the actual control law ui for the ith follower can be
designed as

ui ¼ �c1d�evicl1 � c2d�evicl2 þ _hvi
� 1

2 ĥ
T
i /

T
i /i�evi þ biu0 þ _rdi;

ð44Þ

where c1; c2 > 0, and _rid is acquired through (42).
The corresponding adaptive law is designed as

_̂hi ¼ 1
2
wi/

T
i /iEv i � #iĥiwi; i ¼ 1;2; . . . ;N; ð45Þ

where constants wi; #i > 0, and Ev i is a diagonal matrix with the ele-
ments of its principal diagonal being the same as the corresponding
ones of the matrix �ev i�eTv i.

Define the filtering error of the nonsmooth filter (42) as

~ri ¼ ri � rdi: ð46Þ
The time differentiation of (46) yields that

_~ri ¼ �ðd~ricl1 þ d~ricl2 Þ=si þ _ri: ð47Þ
Construct the following Lyapunov function

V4 ¼ V3 þ 1
2
�eTvi�ev i þ

1
2
trð~hTi w�1

i
~hiÞ þ 1

2
~rT
i
~ri: ð48Þ

Then, the derivative of V4 with respect to time is
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_V4 ¼ eTxið�k1dexicl1 � k2dexicl2 þ ~zv

�jxd
XN
j¼1

aijð~x0j � ~x0iÞ � bi~x0icq1 þ �ev i

�qxd
XN
j¼1

aijð~x0j � ~x0iÞ � bi~x0icq2 � ~riÞ

þ�eTvið�c1d�evicl1 � c2d�evicl2

� 1
2 ĥ

T
i /

T
i /i�ev i þxT

i /i1m þ ei

�jvd
XN
j¼1

aijðv̂0j � v̂0iÞ þ biðzv � v̂0iÞcq1

�qvd
XN
j¼1

aijðv̂0j � v̂0iÞ þ biðzv � v̂0iÞcq2 Þ

þtrð _~hiwi
~hiÞ þ ~rT

i
_~ri; i ¼ 1;2; . . . ;N:

ð49Þ

By applying Young’s inequality, it is easy to deduce that
�eTvixT

i /i1m 6 1
2
�eTvihi/

T
i /i�evi þ m

2. Let ~hi ¼ hi � ĥi. Substituting the
adaptive law (45) into (49) and invoking yT1y2 ¼ trðy2yT1Þ;
8y1; y2 2 Rn, we can further get

_V4 ¼ eTxið�k1dexicl1 � k2dexicl2 þ ~zv

�jxd
XN
j¼1

aijð~x0j � ~x0iÞ � bi~x0icq1 þ �ev i

�qxd
XN
j¼1

aijð~x0j � ~x0iÞ � bi~x0icq2 � ~riÞ

þ#itrðhTi ~hiÞ � #itrð~hTi ~hiÞ
þ�eTvið�c1d�evicl1 � c2d�evicl2 þ ei

�jvd
XN
j¼1

aijðv̂0j � v̂0iÞ þ biðzv � v̂0iÞcq1

�qvd
XN
j¼1

aijðv̂0j � v̂0iÞ þ biðzv � v̂0iÞcq2

�~rT
i ðd~ricl1 þ d~ricl2 Þ=si þ ~rT

i
_ri; i ¼ 1;2; . . . ;N:

ð50Þ

Theorem 2. Consider the MASs constructed by N followers and one
leader. Suppose Assumptions 1 and 2 hold. Then, under the control law
(44) and the adaptive law (45), the MASs can realize the desired time-
varying formation within a fixed time, if the following condition is
satisfied

2
l1þ1

2 m
1�l1

2 k1 � 3 > 0;

2
l2þ1

2 k2 � 3 > 0;

2
l1þ1

2 m
1�l1

2 c1 � 2 > 0;

2
l2þ1

2 c2 � 2 > 0;

1
si
2
l1þ1

2 m
1�l1

2 � 2 > 0;

1
si
2
l2þ1

2 � 2 > 0:

8>>>>>>>>>>>>><>>>>>>>>>>>>>:
ð51Þ
Proof 2. The proof consists of two steps. Firstly, we verify that
exi; �evi; ~hi and ~ri are UUB. Secondly, we prove that exi; �evi and ~ri

are able to converge to a small region around the origin within a
fixed time.

Step 1. From Theorem 1, ~x0i;~zv and ev i are all bounded. Thus, we
can get
490
eTxið�jxd
PN
j¼1

aijðx
�
0j � x

�
0iÞ � bix

�
0icq1 Þ

þeTxið�qxd
PN
j¼1

aijðx
�
0j � x

�
0iÞ � bix

�
0icq2 þ z

�
vÞÞ

þe
�T
við�jvd

PN
j¼1

aijðv̂0j � v̂0iÞ þ biðzv � v̂0iÞcq1

þe
�T
við�qvd

PN
j¼1

aijðv̂0j � v̂0iÞ þ biðzv � v̂0iÞcq2 Þ

6 1
2 e

T
xiexi þ 1

2 e
�T
vie

�
vi þ .2;

ð52Þ

where .2 is a positive constant. In addition, by invoking Young’s
inequality, we have eTxið�ev i � ~riÞ 6 eTxiexi þ 1

2
�eTvi�evi þ 1

2
~rT
i
~ri. Therefore,

(50) can be rewritten as

_V4 6 eTxið�k1dexicl1 � k2dexicl2 Þ þ 3
2 e

T
xiexi

þ�eTvið�c1d�evicl1 � c2d�evicl2 þ eiÞ þ �eTvi�evi
�#itrð~hTi ~hiÞ � ~rT

i ðd~ricl1 þ d~ricl2 Þ=si
þ 1

2
~rT
i
~ri þ ~rT

i
_ri þ #itrðhTi ~hiÞ þ .2:

ð53Þ

Similar to [35–37], it is supposed that k _rik22 6 rMi holds a pos-
itive constant rMi. Thus, by utilizing Young’s inequality, we can
get that

~rT
i
_ri 6

1
2
~rT
i
~ri þ 1

2
rMi: ð54Þ

Furthermore, by utilizing Lemmas 3–4, if condition (51) holds,
we can obtain that

_V4 6 eTxið�k1dexicl1 � k2dexicl2 Þ þ 3
2 e

T
xiexi

þ�eTvið�c1d�evicl1 � c2d�evicl2 þ eiÞ þ �eTvi�evi
�#itrð~hTi ~hiÞ � ~rT

i ðd~ricl1 þ d~ricl2 Þ=si
þ~rT

i
~ri þ #itrðhTi ~hiÞ þ .2 þ 1

2rMi

6 �ð2
l1þ1

2 m
1�l1

2 k1 � 3Þð12 eTxiexiÞ
l1þ1

2

�ð2
l2þ1

2 k2 � 3Þð12 eTxiexiÞ
l2þ1

2

�ð2
l1þ1

2 m
1�l1

2 c1 � 2Þð12 �eTvi�eviÞ
l1þ1

2

�ð2
l2þ1

2 c2 � 2Þð12 �eTvi�ev iÞ
l2þ1

2

�ð1si 2
l1þ1

2 m
1�l1

2 � 2Þð12 ~rT
i
~riÞ

l1þ1
2

�ð1si 2
l2þ1

2 � 2Þð12 ~rT
i
~riÞ

l2þ1
2

� 1
2#itrð~hTi ~hiÞ þ Q1

6 � 1
2 n1ðeTxiexi þ �eTvi�evi þ ~rT

i
~ri

þtrð~hTi w�1
i
~hiÞÞ þ Q1

¼ �n1V4 þ Q1;

ð55Þ

where positive number Q1 ¼ .2 þ 1
2rMi þ 1

2#ih
2
M þ 1

2 e
2
M , and

n1 ¼ minf2
l1þ1

2 m
1�l1

2 k1 � 3;2
l2þ1

2 k2 � 3;

2
l1þ1

2 m
1�l1

2 c1 � 2;2
l2þ1

2 c2 � 2; 1si 2
l1þ1

2 m
1�l1

2 � 2; 1si 2
l2þ1

2 � 2; #iwg. The

penult inequality is based on the fact that y 6 yl1 þ yl2 holds for
some positive constant y.

It yields that
V4 6 Q1

n1
þ ðV4ðt0Þ � Q1

n1
Þe�n1ðt�t0Þ: ð56Þ

From inequality (56), we can obtain that all variables exi; �evi; ~ri

and ~hi are UUB.



T. Xiong, Z. Gu, J. Yi et al. Neurocomputing 463 (2021) 483–494
Step 2. According to Step 1, k~hik2 6 ~hMi holds for some positive
constant ~hMi. Moreover, from Theorem 1, exi ¼ evi ¼ ~zv ¼ 0 for all
t P T0. Thus, for t P T0, we have:

_V4 6 �ð2
l1þ1

2 m
1�l1

2 k1 � 2Þð12 eTxiexiÞ
l1þ1

2

�ð2
l2þ1

2 k2 � 2Þð12 eTxiexiÞ
l2þ1

2

�ð2
l1þ1

2 m
1�l1

2 c1 � 1Þð12 �eTvi�eviÞ
l1þ1

2

�ð2
l2þ1

2 c2 � 1Þð12 �eTv i�eviÞ
l2þ1

2

�ð1si 2
l1þ1

2 m
1�l1

2 � 2Þð12 ~rT
i
~riÞ

l1þ1
2

�ð1si 2
l2þ1

2 � 2Þð12 ~rT
i
~riÞ

l2þ1
2 þ Q2

�ð12 trð~hTi w�1
i
~hiÞÞ

l1þ1
2 � ð12 trð~hTi w�1

i
~hiÞÞ

l2þ1
2 :

ð57Þ

where Q2 ¼ � 1
2#itrð~hTi ~hiÞ þ ð12 trð~hTi w�1

i
~hiÞÞ

l1þ1
2 þ 1

2rMiþ 1
2#ih

2
M þ 1

2 e
2
Mþ

ð12 trð~hTi w�1
i
~hiÞÞ

l2þ1
2 .

Since ~hi is UUB from Step 1, we can get that

� 1
2#itrð~hTi ~hiÞ þ ð12 trð~hTi w�1

i
~hiÞÞ

l1þ1
2 þ ð12 trð~hTi w�1

i
~hiÞÞ

l2þ1
2 6 �hMi holds for

a positive constant �hMi. Then, (57) can be rewritten as

_V4 6 �c1ð12 eTxiexiÞ
l1þ1

2 þ ð12 �eTvi�eviÞ
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ð58Þ

where c1 ¼ minf2
l1þ1

2 m
1�l1

2 k1 � 2;2
l1þ1

2 m
1�l1

2 c1 � 1; 1si 2
l1þ1

2 m
1�l1

2 � 1;1g
and c2 ¼ minf2

l2þ1
2 c2 � 2;2

l2þ1
2 c2 � 1; 1si 2

l2þ1
2 � 1;1g.

According to Lemma 2.2 in [27], we can obtain that

Xi ¼ ½eTxi; �eTvi; ~rT
i �

T is practical fixed-time stable and will converge

to the compact set P within fixed time �T0 6 2l1
ðl1�1Þc1 �/þ

2
c2 �/ð1�l2Þ þ T0, where

P ¼ fXijV4ðXiÞ

6 minfð Q2

ð1� �/Þc1
2l1�1Þ

2
l1þ1

; ð Q2

ð1� �/Þc2
Þ

2
l2þ1

gg: ð59Þ

Since dxi ¼ exi and dvi ¼ evi for t P T0; d can converge to a small
compact set in fixed time �T0 by appropriately choosing the control
and adaptive parameters as well. Consequently, the MASs are able
to realize the desired time-varying formation in fixed time �T0. This
completes the proof.
Remark 5. By means of designing the nonlinear nonsmooth filter
(42), the explosion of complexity problem brought from the back-
stepping technique is well solved. Moreover, in comparison with
the first-order traditional filters, filter (42) can guarantee the
fixed-time convergence of the filtering errors.
Fig. 2. The interaction graph.
Remark 6. In fact, the followers and leader work with limited
energy. As an efficient method to reduce communication and
energy consumption, event-triggered strategy is widely utilized
in the control systems [28,33,38–44]. Thus, in our future work,
we will further try to combine the proposed formation control
scheme with event-triggered mechanism in the above literatures
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under directed topologies such that the proposed control scheme
is more practical. In addition, measurement incompleteness prob-
lem [45] also deserves deep research. Therefore, we will also try to
take measurement incompleteness problem into consideration in
the formation tracking control design and analysis in the future.
4. Simulation

To verify the effectiveness of the proposed formation control
scheme, we establish a MAS consisting of six followers and one lea-
der, whose dynamics are described by (1) and (2), respectively.
Choose the graph G0 as the topology graph, which is shown in
Fig. 2. From Fig. 2, the graph G0 is a directed graph having a
spanning tree. In addition, for the 1st and 6th followers,PN

j¼1a1j ¼
PN

j¼1a6j ¼ 0, which satisfies the condition of Assumption
1.

In this simulation, the six followers are supposed to form and
maintain a time-varying regular hexagon formation of which edges
lengthen along with time in the X-Y plane and to rotate around the

varying leader with x0 ¼ ½5 cosð0:1tÞ;5t�T simultaneously.
Moreover, the uncertainties f i are selected as

f 1 ¼ ½3 sinð0:2v1XÞ;2 cosð0:1v1Y Þ�T ;
f 2 ¼ ½3 cosð0:2v2XÞ;2 cosð0:2v2Y Þ�T ;
f 3 ¼ ½3 sinð0:1v2

3XÞ;2 cosð0:1v2
3Y Þ�

T
;

f 4 ¼ ½3 sinð0:1v2
4XÞ;2 cosð0:1v2

4Y Þ�
T
;

f 5 ¼ ½3 sinð0:1v2
5XÞ;2 sinð0:1v2

5Y Þ�
T
;

f 6 ¼ ½3 sinð0:2v2
6XÞ;2 cosð0:1v2

6Y Þ�
T
;

ð60Þ

where v iX and v iY denote the elements of the vector v i ¼ ½v iX ;v iY �T .
Moreover, hxi is given as follows

hxiðtÞ ¼
0:2t cosð0:1t þ ði� 1Þp=3Þ
0:2t sinð0:1t þ ði� 1Þp=3Þ

� �
: ð61Þ

In addition, the values of the observer and control parameters
are set as shown in Tables 1 and 2, respectively. We choose the ini-
tial position states of the six followers and the leader as

x1ð0Þ ¼ ½5;5�T ; x2ð0Þ ¼ ½0;�4�T ; x3ð0Þ ¼ ½�4;4�T ;
x4ð0Þ ¼ ½3;3�T ; x5ð0Þ ¼ ½5;2�T ; x6ð0Þ ¼ ½1;�3�T ; x0ð0Þ ¼ ½0;10�T ,
while the initial velocity state vectors of those are chosen as zero
vectors. Figs. 3–7 show the simulation results. Fig. 3 presents the
varying positions at t ¼ 10;15;20;25;30 s, from which we can
observe that the six followers achieve the desired time-varying
regular hexagon formation with the length of its edges growing
longer. Moreover, the six followers track the trajectory of the
dynamic leader in the meanwhile. Fig. 4 depicts the curves of dxi
along X-axis and Y-axis. Fig. 5 represents the curves of the obser-
vation errors ~x0i and �~v0i along X-axis and Y-axis. From Figs. 4,5,
we can get that the formation tracking error dxi can converge to a
small enough neighborhood of the origin in 5 s, while ~x0i and �~v0i



Fig. 4. Formation tracking position errors on X-axis and Y-axis of the six followers.

Table 2
Observer parameters.

a1 a2 b1 b2 m1 m2 m3 m4

10 10 0.1 0.1 0.95 1.05 0.9 1.1

jx jv qx qv q1 q2

1 1 1 2 2 0.5

Table 1
Control parameters.

k1 k2 c1 c2 l1 l2 si wi

2 3 2 1 1.5 0.8 0.5 0.01

#1 #2 #3 #4 #5 #6

2 2 2 2 1 1

Fig. 5. Observation errors of the six followers on X-axis and Y-axis.

Fig. 3. Position snapshots of the six followers and the leader.

Fig. 7. Control inputs on X-axis and Y-axis of the six followers.

Fig. 6. MLP outputs on X-axis and Y-axis of the six followers.
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converge to the origin at around 3 s. Figs. 6 and 7 display the curves
of the MLP outputs and the control inputs along X-axis and Y-axis,
respectively.

Moreover, we conduct another simulation under different ini-
tial states of the six followers to verify the fixed-time convergence
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of the formation tracking errors. Fig. 8 presents the formation
tracking position errors on X-axis and Y-axis of the six followers
under initial states x1ð0Þ ¼ ½10;�10�T ; x2ð0Þ ¼ ½�5;10�T ; x3ð0Þ ¼
½0;�8�T ; x4ð0Þ ¼ ½�6;�6�T ; x5ð0Þ ¼ ½�10;�4�T ; x6ð0Þ ¼ ½6;6�T .
From Figs. 4 and 8, we can get that the formation tracking position
errors converge in a similar settling time. Since the obvious feature
of fixed-time control is that the settling time is independent of the
initial states, we can draw a conclusion that the formation position
errors can converge in a fixed time under the proposed fixed-time
formation control scheme.



Fig. 8. Formation tracking position errors on X-axis and Y-axis of the six followers
under different initial states.
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5. Conclusion

In order to cope with the time-varying formation tracking con-
trol problem in a fixed time for MASs in presence of uncertainties
under directed topologies and with no need for LVMs, an observer
based adaptive fixed-time formation control scheme with MLP is
established in this paper. A new CFTSO is put forward to ensure
that each follower can acquire the estimates of the LSs within a
fixed time under directed topologies, which overcomes the diffi-
culty of the absence of the LVMs. By utilizing MLP technique, the
model uncertainties are well addressed and the computation bur-
den is lighted at the same time. The strict stability analysis is pre-
sented and the effectiveness of the proposed control scheme is
validated by the simulation results. In our future work, we will
do our best to achieve the fixed-time formation tracking for
multi-agent systems under directed topologies in the event-
triggered control framework. In addition, we will also explore the
measurement incompleteness problem and achieve expected for-
mation tracking in the meantime.
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